
 <DRAFT> Mitigating Forgetting in Small Federated Learning Networks 1

<DRAFT> Mitigating Forgetting in Small Federated Learning Networks
Bill Paseman <bill@rarekidneycancer.org>
Paseman & Associates Saratoga, California, 95070 U.S.A.

(Abstract) We describe a series of "Federated Learning" experiments which create "Deep Learning" models while preserving
the privacy of their distributed, siloed datasets. We do this by creating randomized equal length mini-batches in each silo at the
beginning of each epoch, running Stochastic Gradient Descent locally, then combining the results and looping to the next
epoch. Scheduling can be done either peer-to-peer or using a central server. This approach avoids the effect of
"forgetting" (model detuning) which occurs when a fully-programmed model is passed to each silo in succession for training.
It is suited to organizations which cannot overtly make their data public such as pharmaceutical and healthcare organizations
who want to jointly create a Deep Learning model using all their datasets without exposing their data (due to HIPAA or
competitive reasons). Questions can be directed to bill@rarekidneycancer.org.

1. INTRODUCTION
Cancer drug development is slow and costly. Just

6.6% of cancer patients currently see benefits from
existing drugs. Also, at the current rate of progress, it
would take more than 200 years for all existing patients
to be helped. [20180424] One way to mitigate both time
and cost is to automate early stages of the drug
development pipeline. Several stages of various pipelines
now utilize Deep Learning models to assist in this.

Unfortunately, Deep Learning models require a great
deal of data and most of that data is fragmented and
resides behind the paywalls of disparate organizations.
Collecting the data into a central repository is difficult
due to a variety of competitive, legal and privacy
constraints (such as HIPAA[HIPAA]). What is needed,
and what is described here, are Federated Learning
mechanisms whereby various organizations can
collaborate while maintaining control over their own
data. Here, we describe several Federated Learning
mechanisms which overcome model “detuning” (called
“Catastrophic Forgetting” in the literature) which can
come about when implementing “Federated Learning” in
a distributed environment.

2. BACKGROUND

2.1. Deep Learning
Deep Learning (DL) is a machine learning method

based on learning data representations, as opposed to
task-specific algorithms. It is especially attractive in an
environment like pharmaceutical development where
(arguably) datasets, not algorithms are the key limiting
factor to progress. Here, DL uses Deep Neural Nets
(DNNs) which consist of multiple layers of Artificial
Neural Networks (ANNs) between the DNN input and
output layers. ANNs in turn consist of arrays of neurons,
which are linear regressions followed by a non-linear
activation operator (such as sigmoid).

In order to train the DNN, a back-propagation
algorithm is used to derive gradients for each layer.
Stochastic gradient descent (SGD) and its extensions are
central to optimizing the operation of most DL
algorithms, and to our implementations in particular.

We illustrate our findings using the DL code at
[neuralnetworksanddeeplearning.com] and the MNIST
dataset [MNIST] which contains tens of thousands of
scanned images of handwritten digits, together with their
correct classifications.

2.2. Federated Learning
As described in “Federated Learning: Collaborative

Machine Learning without Centralized Training
Data” [20170406] , Federated Learning is a “learning
task .. solved by a loose federation of participating
devices (which we refer to as clients) which are
coordinated by a central server. Each client has a local
training dataset which is never uploaded to the server.
Instead, each client computes an update to the current
global model maintained by the server, and only this
update is communicated.” Federated Learning works by
“decoupling of model training from the need for direct
access to the raw training data.” This early research
focused on parallel utilization of a slow network of many
mobile phones each containing a relatively small amount
of data to implement a variation of Stochastic gradient
descent. There are several issues here for us.

• Few “data heavy” clients vs many “data lite”
clients - We are not as interested in the gigabytes
of data stored on 1,000’s of mobile phones (“data
lite”) as we are in HIPAA [HIPAA] compliant
medical datasets containing petabytes siloed at
dozens of institutions (“data heavy”). Recent
research [20181208], [20190311] has noted that
moving from a “data lite” to “data heavy”
operating point impacts

o Statistics - Samples are more likely to be
independent and identically distributed
(iid).

o Communication costs-more examples per
client, so less communication is done.

o Security - more data is aggregated per
client, so it is less likely that data can be
reverse engineered from the model.

• Peer-to-Peer vs. Central Server - Like
[20181208], [20190311], our operating point
deals with substantially fewer, larger compute

April 30 2019

 <DRAFT> Mitigating Forgetting in Small Federated Learning Networks 2

nodes. As such, we also consider peer-to-peer
processing as well as server centric processing.

• Forgetting - Finally, although SGD and its
variants are probably the most used optimization
algorithms for machine learning, we encountered
“Forgetting” when applying this approach to Deep
Learning in a distributed environment with few
datasources, each containing a lot of data. We
have not seen this discussed in the Federated
Learning Literature and discuss it more in the next
section.

2.3. Catastrophic Forgetting
As described in “Measuring Catastrophic Forgetting in

Neural Networks”[20170808], “Once a network is
trained to do a specific task, e.g., fine-grained bird
classification, it cannot easily be trained to do new tasks,
e.g., incrementally learning to recognize additional bird
species or learning an entirely different task such as fine-
grained flower recognition. When new tasks are added,
deep neural networks are prone to catastrophically
forgetting previously learned information.” In point of
fact, this isn’t a particularly new problem. After reaching
masters level, some chess computer programmers turn
off “learning mode” in their chess-playing programs to
prevent “detuning” them when they play lesser skilled
opponents. Apparently, like chess programs, DL
networks are known by the company they keep.

3. ALGORITHMS

3.1. Nielsen Stochastic Gradient Descent

Algorithm 1: Nielsen SGD (NSGD)

def NSGD(self, training_data, epochs,
 mini_batch_size, eta, test_data=None):
 """Train the neural network using mini-batch
stochastic gradient descent. The
"training_data" is a list of tuples "(x, y)"
representing the training inputs and the
desired outputs. The other non-optional
parameters are self-explanatory. If
"test_data" is provided then the network will
be evaluated against the test data after each
epoch, and partial progress printed out. This
is useful for tracking progress, but slows
things down substantially."""
 if test_data: n_test = len(test_data)
 n = len(training_data)
 for j in xrange(epochs):
 random.shuffle(training_data)
 mini_batches = [
 training_data[k:k+mini_batch_size]
 for k in xrange(0, n, mini_batch_size)]
 for mini_batch in mini_batches:
 self.update_mini_batch(mini_batch, eta)
 if test_data:
 print "Epoch {0}: {1} / {2}".format(
 j, self.evaluate(test_data), n_test)
 else:
 print "Epoch {0} complete".format(j)

Central to the Deep Learning Algorithm is the SGD
(Stochastic Gradient Descent) Routine. Above is the
original SGD routine we took from Nielsen’s work
[neuralnetworks-anddeeplearning.com].

3.2. Forgetting in NSGD
One might think that splitting the Deep Learning Task

amongst different data silos is relatively straightforward.
Just let silo1 train a model on private data behind its
firewall and then pass the model to silo2, letting it extend
the model behind its firewall and so on.

We can model this approach for two silos by splitting
the MNIST target dataset into two, and measuring the
accuracy (the percent of test cases that the resulting
model ‘passes’) for each approach.

The results for the MNIST dataset are shown below.

The blue dashed line labeled “UnSplit” shows the
effect of training a network using NSGD on 50,000
MNIST examples. Note that it reaches 95% accuracy
after 15 epochs.

The Orange solid line shows the effect of training on
the first 25,000 MNIST examples. Note that it also
reaches 95% accuracy after 15 epochs. The Green line
shows the detuning (or “forgetting”) that occurs when
the second 25,000 MNIST examples are used to train the
network created by the first 25,000 MNIST examples.

The reason this “forgetting” occurs is that the above
mechanism breaks a fundamental assumption central to
SGD, namely that the samples are independent and
identically distributed (iid). Given that the data set was
arbitrarily split in two, it would require a fair amount of
luck to have the statistics between the first and second
halves match one another.

One positive aspect of this approach is that it
effectively anonymizes the data. One silo can’t “reverse
compile” data that the other silo used to create the
model. We now discuss a way to get the best of both
worlds: anonymized data and “good enough” random
data sampling.

April 30 2019

 <DRAFT> Mitigating Forgetting in Small Federated Learning Networks 3

3.3. Serial Silo Randomization SGD
Our approach is to try and make the Central limit

theorem work for us. Clearly, if we made our mini-batch
size equal to one and sampled between silos, everything
should work out fine, since that would move Stochastic
Gradient Descent to the edge case where it implements
Batch Gradient descent. But how about samples (mini-
batches) of size 5? or 10? or 20? Here, we will measure
the tradeoffs between silo count and mini-batch size,
assuming an equal amount of data per silo. This code
can be structured in a few ways in a distributed
environment. We’ll consider a peer-to-peer example
first. A simulator for this “Serial Silo” SGD (SSSGD)
approach is shown in figure SSSGD. Here’s how it
works:

Let’s assume 32 pieces of training data and mini-
batches of length 4 with 4 silos.

training_data [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31]

Assume also that these data are evenly divided
amongst 4 different silos.

Silo ID - Silo Content
0 [0 1 2 3 4 5 6 7]
1 [8 9 10 11 12 13 14 15]
2 [16 17 18 19 20 21 22 23]
3 [24 25 26 27 28 29 30 31]

We then start processing the first epoch by
randomizing the content in each silo.

Silo ID - Silo Content
0 [0 7 3 4 2 1 6 5]
1 [12 10 11 14 13 9 15 8]
2 [21 18 17 19 23 22 16 20]
3 [26 30 31 29 28 24 25 27]

Then break each silo’s contents into mini-batches of
length 4.

Silo ID - Silo Content
0 [0, 7, 3, 4], [2, 1, 6, 5]
1 [12, 10, 11, 14], [13, 9, 15, 8]
2 [21, 18, 17, 19], [23, 22, 16, 20]
3 [26, 30, 31, 29], [28, 24, 25, 27]

In a peer-to-peer architecture, silo0 processes its mini-
batches, updates an initialized model and sends the result
to silo1. Silo1 updates the model with its mini-batches
and sends the result to silo2, which updates the model
with its mini-batches and sends it to silo3, which sends
its updated model back to silo0. Silo0 then evaluates the
model against the test data. If it passes the accuracy
criteria or epoch limit, the cycle stops. Otherwise silo0
re-randomizes its content and the cycle continues.

Note that for any particular epoch, since gradients are
summed into the model’s parameters, order of mini-
batch processing does not matter. We could sum Silo2’s

second mini batch with Silo1’s first mini batch and all
the rest in any order. But we choose to let each silo sum
the gradients resulting from their respective mini batches
locally and avoid the overhead of transmitting
intermediate results.

This makes communication O(silo count x epochs).

Algorithm 2: Serial Silo SGD (SSSGD)

def SSSGD(self, training_data, epochs,
 mini_batch_size, eta, silo_count,
 test_data=None):
 if test_data: n_test = len(test_data)
 n = len(training_data)
 random.shuffle(training_data)
 silo_size=n/silo_count
 silos = []
 for k in xrange(0, n, silo_size):
 silos.append(training_data[k:k+silo_size])

 for j in xrange(epochs):

 mini_batches = []
 for silo in silos:
 random.shuffle(silo)
 for k in xrange(0,len(silo),
 mini_batch_size)]:
 mini_batches.append(
 silo[k:k+mini_batch_size])

 for mini_batch in mini_batches:
 self.update_mini_batch(mini_batch, eta)
 if test_data:
 print "Epoch {0}: {1} / {2}".format(
 j, self.evaluate(test_data), n_test)
 else:
 print "Epoch {0} complete".format(j)

April 30 2019

 <DRAFT> Mitigating Forgetting in Small Federated Learning Networks 4

3.4. Comparing NSGD and SSSGD
Figures 2 illustrates results for NSGD running on a

mini-batch size of 5 for 50 trials, 30 epochs and 1 silo.
Figure 3 uses identical min-batch, trial and epoch size
but runs SSSGD on 2 silos. The curve clusters show
expected behavior. They start out in the vicinity of 90%
accuracy after the first epoch and converge to about 95%
accuracy after 30 epochs. Note that one of the 50 NSGD
trials and one of the 50 SSSGD trials converged at about
84%. Note also that two of the SSSGD trials converged
after 4 iterations.

This is summarized in the “crossovers” column in
“Table 1: NSGD and SSSGD Comparisons”, which
records the count of trials which have not converged
above 90% for 2,4,8,16 and 29 epochs respectively. For
example, as can be seen in the table, NSGD/5MBS
(MBS=mini-batch size) had 3 trials that did not converge
after 2 and 4 epochs, 2 trials that did not converge after 8
epochs and 1 trial that did not converge after 16 and 29
epochs. The table’s First Mean column is the mean of all
epoch 1 trials. The Last Mean column is the mean of all
epoch 30 trials. The Last Variance column is the variance
of all epoch 30 trials.

We plot First Mean and Last Mean versus Silo Count
in Figure 4.

Table 1: NSGD and SSSGD Comparisons

Figure 4 shows that as the mini-batch size increases,
Accuracy falls and it takes longer to cross over the 90%
threshold. This also accounts for the increased variance
of the final epoch’s accuracy. For mini_batches of 5,
both “First Mean” and “Last Mean” seem largely
unaffected by silo count.

Name M
B
S

Cross
overs

2,4,8,16,29

Silo
Cnt

First
Mean

Last
Mean

Last
Variance

NSGD 5 3, 3, 2, 1, 1 1 0.9018 0.9481 0.0003006

NSGD 10 6,6,5,3,1 1 0.8805 0.9477 0.0002901

NSGD 20 12,8,6,5,3 1 0.8439 0.9420 0.0007900

SSSGD 5 6, 4, 2, 1, 1 2 0.8972 0.9479 0.0002975

SSSGD 10 7, 4, 2, 1, 1 2 0.8846 0.9470 0.0003888

SSSGD 20 8, 7, 6, 1, 1 2 0.8544 0.9428 0.0011728

SSSGD 5 3, 2, 1, 1, 0 4 0.8973 0.9494 0.0000160

SSSGD 10 8, 5, 3, 2, 2 4 0.8812 0.9457 0.0005974

SSSGD 20 10,10,9,8,4 4 0.8416 0.9388 0.0010669

SSSGD 5 4, 4, 2, 1, 0 8 0.8919 0.9495 0.0000103

SSSGD 10 8, 5, 3, 3, 3 8 0.8777 0.9427 0.0009329

SSSGD 20 11,7,5,3,2 8 0.8480 0.9419 0.0007518

SSSGD 5 5, 4, 4, 1, 0 16 0.8974 0.9494 0.0000067

SSSGD 10 8, 7, 3, 2, 1 16 0.8759 0.9464 0.0002443

SSSGD 20 11, 8, 7, 5, 5 16 0.8575 0.9360 0.0014022

April 30 2019

 <DRAFT> Mitigating Forgetting in Small Federated Learning Networks 5

3.5. Parallel Silo Randomization SGD
An alternate architecture would be to have a central

server that sends the model to each silo. Silos would
then return gradients to the central server. The server
would sum the gradients together and evaluate the model
against the test data. The server would continue the
cycle until the desired level of accuracy was obtained or
the epoch limit was reached. There are several positive
tradeoffs to counter the added overhead disadvantage of
central processing. One is that using a central server
could be O(silo_count) faster, since it allows each silo to
work in parallel. Another is that conceptually, any client
could hold up processing in the serial silo scenario. A
central server can more easily recover from the loss or
processing delay of a single client.

4. CONCLUSIONS
Using "Federated Learning" to create "Deep Learning"

models while preserving the privacy of their distributed,
siloed datasets seems to work for the MNIST dataset
across 16 silos. As such, it seems that our statistical
assumptions (iid) are valid in this case.

However, this does raise the question, why wasn’t
forgetting encountered in prior work [20170217]? The
answer, we believe, relates to the relatively large number
of client nodes in their case. The authors actually ignore
a subset of their clients since “experiments show
diminishing returns for adding more clients beyond a
certain point”. So although, as they say, “any particular
dataset will not be representative of the population
distribution”, random mini-batches across collections of
clients will be. As such, statistically, their random mini-
batches of clients probably correspond to our clients’
random mini-batches.

5. FUTURE WORK
The next step is to use this paper to convince some

silos to try it on real data. At that point, “plumbing”
issues must be addressed. For example,

• Meta Data - In a peer-to-peer network, a client
must know the order of processing so that it can
send the data to the next client. What is the
acknowledgement protocol? When does a
“timeout” occur?, etc.

• Standard Formats - E.g. The interchange format
contains layers of weights. What format and
precision should be used to transmit the data?
E.g. Is 100% transmitted as 100.000 or 1.0000?

• Benchmark Data - E.g. Published results in the
literature generally lack benchmark data. This is
necessary if we want to “calibrate” two different
neural networks running in two different
installations to see if they produce the “same”
result.

In addition, the protocol must take into account the
fact that data and silos will be added over time.

Future experiments might look into splitting test
(validation) data as well as trial data.

We need to look into the possibility of adversarial
attacks which could reverse compile patient data from
the DL model [20170914].

Finally, in the real world, there are a variety of reasons
that the institutions behind these silos do not co-operate
(beyond HIPAA). They include inertia, “Not Invented
Here” and competitive considerations. A future paper
will describe a framework for addressing this.

Acknowledgments
The author wishes to thank Mike D’Amour and Felix

Frayman for their comments and guidance.

References
[HIPAA] - https://www.hhs.gov/hipaa/for-individuals/

guidance-materials-for-consumers/index.html
[MNIST] - http://yann.lecun.com/exdb/mnist/
[neuralnetworksanddeeplearning.com] Michael A.

Nielsen, "Neural Networks and Deep Learning",
Determination Press, 2015

[20170217] H. Brendan McMahan, Eider Moore, Daniel
Ramage, Seth Hampson and Blaise Aguera y
Arcas, Communication-efficient learning of deep
networks from decentralized data, 20’th
International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

[20170406] McMahan, Brendan and Ramage, Daniel,
"Federated Learning: Collaborative Machine
Learning without Centralized Training Data",
Google AI Blog (April 6, 2017)

[20170914] B. Hitaj, G. Ateniese, and F. Pe ́rez-Cruz,
“Deep Models Under the GAN: Information
Leakage from Collaborative Deep Learning,” in
Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications
Security, 2017.

[20180424] Kaiser, Jocelyn, "A cancer drug tailored to
your tumor? Experts trade barbs over ‘precision
oncology’", Science 364(6437) (Apr. 24, 2018)
doi:10.1126/science.aat9794

[20181208] Vepakomma, P., Swedish, T., Raskar, R.,
Gupta, O., & Dubey, A. (2018). No Peek: A
Survey of private distributed deep learning.
CoRR, abs/1812.03288.

[20190311] Hao, Karen, "A little-known AI method can
train on your health data without threatening your
privacy", Technology Review (March 11, 2019)

April 30 2019

https://www.hhs.gov/hipaa/for-individuals/guidance-materials-for-consumers/index.html
https://www.hhs.gov/hipaa/for-individuals/guidance-materials-for-consumers/index.html
https://www.hhs.gov/hipaa/for-individuals/guidance-materials-for-consumers/index.html
http://yann.lecun.com/exdb/mnist/

	INTRODUCTION
	Background
	Deep Learning
	Federated Learning
	Catastrophic Forgetting

	Algorithms
	3.1. Nielsen Stochastic Gradient Descent
	3.2. Forgetting in NSGD
	3.3. Serial Silo Randomization SGD
	3.4. Comparing NSGD and SSSGD
	3.5. Parallel Silo Randomization SGD

	Conclusions
	Future Work

