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(Abstract) We describe a series of "Federated Learning" experiments which create "Deep Learning" models while preserving 
the privacy of their distributed, siloed datasets.  We do this by creating randomized equal length mini-batches in each silo at the 
beginning of each epoch, running Stochastic Gradient Descent locally, then combining the results and looping to the next 
epoch.  Scheduling can be done either peer-to-peer or using a central server.  This approach avoids the effect of 
"forgetting" (model detuning) which occurs when a fully-programmed model is passed to each silo in succession for training.  
It is suited to organizations which cannot overtly make their data public such as pharmaceutical and healthcare organizations 
who want to jointly create a Deep Learning model using all their datasets without exposing their data (due to HIPAA or 
competitive reasons).  Questions can be directed to bill@rarekidneycancer.org.  

1. INTRODUCTION
Cancer drug development is slow and costly.  Just 

6.6% of cancer patients currently see benefits from 
existing drugs.  Also, at the current rate of progress, it 
would take more than 200 years for all existing patients 
to be helped. [20180424]  One way to mitigate both time 
and cost is to automate early stages of the drug 
development pipeline. Several stages of various pipelines 
now utilize Deep Learning models to assist in this. 

Unfortunately, Deep Learning models require a great 
deal of data and most of that data is fragmented and 
resides behind the paywalls of disparate organizations.  
Collecting the data into a central repository is difficult 
due to a variety of competitive, legal and privacy 
constraints (such as HIPAA[HIPAA]).  What is needed, 
and what is described here, are Federated Learning 
mechanisms whereby various organizations can 
collaborate while maintaining control over their own 
data.  Here, we describe several Federated Learning 
mechanisms which overcome model “detuning” (called 
“Catastrophic Forgetting” in the literature) which can 
come about when implementing “Federated Learning” in 
a distributed environment. 

2. BACKGROUND

2.1. Deep Learning
Deep Learning (DL) is a machine learning method 

based on learning data representations, as opposed to 
task-specific algorithms.  It is especially attractive in an 
environment like pharmaceutical development where 
(arguably) datasets, not algorithms are the key limiting 
factor to progress.  Here, DL uses Deep Neural Nets 
(DNNs) which consist of multiple layers of Artificial 
Neural Networks (ANNs) between the DNN input and 
output layers.  ANNs in turn consist of arrays of neurons, 
which are linear regressions followed by a non-linear 
activation  operator (such as sigmoid).   

In order to train the DNN, a back-propagation 
algorithm is used to derive gradients for each layer.  
Stochastic gradient descent (SGD) and its extensions are 
central to optimizing the operation of most DL 
algorithms, and to our implementations in particular. 

We illustrate our findings using the DL code at 
[neuralnetworksanddeeplearning.com] and the MNIST 
dataset [MNIST] which contains tens of thousands of 
scanned images of handwritten digits, together with their 
correct classifications. 

2.2. Federated Learning
As described in “Federated Learning: Collaborative 

Machine Learning without Centralized Training 
Data” [20170406] , Federated Learning is a “learning 
task .. solved by a loose federation of participating 
devices (which we refer to as clients) which are 
coordinated by a central server. Each client has a local 
training dataset which is never uploaded to the server. 
Instead, each client computes an update to the current 
global model maintained by the server, and only this 
update is communicated.”  Federated Learning works by 
“decoupling of model training from the need for direct 
access to the raw training data.”  This early research 
focused on parallel utilization of a slow network of many 
mobile phones each containing a relatively small amount 
of data to implement a variation of Stochastic gradient 
descent. There are several issues here for us. 

• Few “data heavy” clients vs many “data lite” 
clients - We are not as interested in the gigabytes 
of data stored on 1,000’s of mobile phones (“data 
lite”) as we are in HIPAA [HIPAA] compliant 
medical datasets containing petabytes siloed at 
dozens of institutions (“data heavy”).  Recent 
research [20181208], [20190311] has noted that 
moving from a “data lite” to “data heavy” 
operating point impacts  

o Statistics - Samples are more likely to be 
independent and identically distributed 
(iid). 

o Communication costs-more examples per 
client, so less communication is done. 

o Security - more data is aggregated per 
client, so it is less likely that data can be 
reverse engineered from the model. 

• Peer-to-Peer vs. Central Server - Like 
[20181208], [20190311], our operating point 
deals with substantially fewer, larger compute 
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nodes.  As such, we also consider peer-to-peer 
processing as well as server centric processing. 

• Forgetting - Finally, although SGD and its 
variants are probably the most used optimization 
algorithms for machine learning, we encountered 
“Forgetting” when applying this approach to Deep 
Learning in a distributed environment with few 
datasources, each containing a lot of data.  We 
have not seen this discussed in the Federated 
Learning Literature and discuss it more in the next 
section. 

2.3. Catastrophic Forgetting
As described in “Measuring Catastrophic Forgetting in 

Neural Networks”[20170808], “Once a network is 
trained to do a specific task, e.g., fine-grained bird 
classification, it cannot easily be trained to do new tasks, 
e.g., incrementally learning to recognize additional bird 
species or learning an entirely different task such as fine-
grained flower recognition. When new tasks are added, 
deep neural networks are prone to catastrophically 
forgetting previously learned information.” In point of 
fact, this isn’t a particularly new problem. After reaching 
masters level, some chess computer programmers turn 
off “learning mode” in their chess-playing programs to 
prevent “detuning” them when they play lesser skilled 
opponents. Apparently, like chess programs, DL 
networks are known by the company they keep. 

3. ALGORITHMS

3.1. Nielsen Stochastic Gradient Descent

Algorithm 1: Nielsen SGD (NSGD)

def NSGD(self, training_data, epochs, 
        mini_batch_size, eta, test_data=None):
  """Train the neural network using mini-batch 
stochastic gradient descent.  The 
"training_data" is a list of tuples "(x, y)" 
representing the training inputs and the 
desired outputs.  The other non-optional 
parameters are self-explanatory.  If 
"test_data" is provided then the network will 
be evaluated against the test data after each 
epoch, and partial progress printed out.  This 
is useful for tracking progress, but slows 
things down substantially."""
  if test_data: n_test = len(test_data)
  n = len(training_data)
  for j in xrange(epochs):
    random.shuffle(training_data)
    mini_batches = [
      training_data[k:k+mini_batch_size]
      for k in xrange(0, n, mini_batch_size)]
    for mini_batch in mini_batches:
      self.update_mini_batch(mini_batch, eta)
    if test_data:
       print "Epoch {0}: {1} / {2}".format(
         j, self.evaluate(test_data), n_test)
    else:
       print "Epoch {0} complete".format(j)

Central to the Deep Learning Algorithm is the SGD 
(Stochastic Gradient Descent) Routine.  Above is the  
original SGD routine we took from Nielsen’s work 
[neuralnetworks-anddeeplearning.com].  

3.2. Forgetting in NSGD
One might think that splitting the Deep Learning Task 

amongst different data silos is relatively straightforward.  
Just let silo1 train a model on private data behind its 
firewall and then pass the model to silo2, letting it extend 
the model behind its firewall and so on. 

We can model this approach for two silos by splitting 
the MNIST target dataset into two, and measuring the 
accuracy (the percent of test cases that the resulting 
model ‘passes’) for each approach. 

The results for the MNIST dataset are shown below. 

The blue dashed line labeled “UnSplit” shows the 
effect of training a network using NSGD on 50,000 
MNIST examples.  Note that it reaches 95% accuracy 
after 15 epochs. 

The Orange solid line shows the effect of training on 
the first 25,000 MNIST examples.  Note that it also 
reaches 95% accuracy after 15 epochs.  The Green line 
shows the detuning (or “forgetting”) that occurs when 
the second 25,000 MNIST examples are used to train the 
network created by the first 25,000 MNIST examples. 

The reason this “forgetting” occurs is that the above 
mechanism breaks a fundamental assumption central to 
SGD, namely that the samples are independent and 
identically distributed (iid).  Given that the data set was 
arbitrarily split in two, it would require a fair amount of 
luck to have the statistics between the first and second 
halves match one another. 

One positive aspect of this approach is that it 
effectively anonymizes the data.  One silo can’t “reverse 
compile” data that the other silo used to create the 
model.  We now discuss a way to get the best of both 
worlds: anonymized data and “good enough” random 
data sampling. 
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3.3. Serial Silo Randomization SGD
Our approach is to try and make the Central limit 

theorem work for us.  Clearly, if we made our mini-batch 
size equal to one and sampled between silos, everything 
should work out fine,  since that would move Stochastic 
Gradient Descent to the edge case where it implements 
Batch Gradient descent.  But how about samples (mini-
batches) of size 5? or 10? or 20?  Here, we will measure 
the tradeoffs between silo count and mini-batch size, 
assuming an equal amount of data per silo.  This code 
can be structured in a few ways in a distributed 
environment.  We’ll consider a peer-to-peer example 
first. A simulator for this “Serial Silo” SGD (SSSGD) 
approach is shown in figure SSSGD.  Here’s how it 
works: 

Let’s assume 32 pieces of training data and mini-
batches of length 4 with 4 silos. 

training_data [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31] 

Assume also that these data are evenly divided 
amongst 4 different silos. 

Silo ID - Silo Content 
0         [0 1 2 3 4 5 6 7] 
1         [ 8  9 10 11 12 13 14 15] 
2         [16 17 18 19 20 21 22 23] 
3         [24 25 26 27 28 29 30 31] 

We then start processing the first epoch by 
randomizing the content in each silo. 

Silo ID - Silo Content 
0         [0 7 3 4 2 1 6 5] 
1         [12 10 11 14 13  9 15  8] 
2         [21 18 17 19 23 22 16 20] 
3         [26 30 31 29 28 24 25 27] 

Then break each silo’s contents into mini-batches of 
length 4. 

Silo ID - Silo Content 
0         [0, 7, 3, 4], [2, 1, 6, 5] 
1         [12, 10, 11, 14], [13, 9, 15, 8] 
2         [21, 18, 17, 19], [23, 22, 16, 20] 
3         [26, 30, 31, 29], [28, 24, 25, 27] 

In a peer-to-peer architecture, silo0 processes its mini-
batches, updates an initialized model and sends the result 
to silo1.  Silo1 updates the model with its mini-batches 
and sends the result to silo2, which updates the model 
with its mini-batches and sends it to silo3, which sends 
its updated model back to silo0.  Silo0 then evaluates the 
model against the test data.  If it passes the accuracy 
criteria or epoch limit, the cycle stops.  Otherwise silo0 
re-randomizes its content and the cycle continues. 

Note that for any particular epoch, since gradients are 
summed into the model’s parameters, order of mini-
batch processing does not matter.  We could sum Silo2’s 

second mini batch with Silo1’s first mini batch and all 
the rest in any order.  But we choose to let each silo sum 
the gradients resulting from their respective mini batches 
locally and avoid the overhead of transmitting 
intermediate results. 

This makes communication O(silo count x epochs). 

Algorithm 2: Serial Silo SGD (SSSGD)

def SSSGD(self, training_data, epochs,
          mini_batch_size, eta, silo_count,
          test_data=None):
  if test_data: n_test = len(test_data)
  n = len(training_data)
  random.shuffle(training_data)
  silo_size=n/silo_count 
  silos = []
  for k in xrange(0, n, silo_size):
    silos.append(training_data[k:k+silo_size])

  for j in xrange(epochs):

    mini_batches = []
    for silo in silos:
      random.shuffle(silo)
      for k in xrange(0,len(silo), 
                      mini_batch_size)]:
        mini_batches.append(
                     silo[k:k+mini_batch_size])
 
      for mini_batch in mini_batches:
        self.update_mini_batch(mini_batch, eta)
      if test_data:
        print "Epoch {0}: {1} / {2}".format(
         j, self.evaluate(test_data), n_test)
      else:
        print "Epoch {0} complete".format(j)
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3.4. Comparing NSGD and SSSGD
Figures 2 illustrates results for NSGD running on a 

mini-batch size of 5 for 50 trials, 30 epochs and 1 silo.  
Figure 3 uses identical min-batch, trial and epoch size 
but runs SSSGD on 2 silos.  The curve clusters show 
expected behavior.  They start out in the vicinity of 90% 
accuracy after the first epoch and converge to about 95% 
accuracy after 30 epochs.  Note that one of the 50 NSGD 
trials and one of the 50 SSSGD trials converged at about 
84%.  Note also that two of the SSSGD trials converged 
after 4 iterations.   

This is summarized in the “crossovers” column in 
“Table 1: NSGD and SSSGD Comparisons”, which 
records the count of trials which have not converged 
above 90% for 2,4,8,16 and 29 epochs respectively.  For 
example, as can be seen in the table, NSGD/5MBS 
(MBS=mini-batch size) had 3 trials that did not converge 
after 2 and 4 epochs, 2 trials that did not converge after 8 
epochs and 1 trial that did not converge after 16 and 29 
epochs.  The table’s First Mean column is the mean of all 
epoch 1 trials. The Last Mean column is the mean of all 
epoch 30 trials. The Last Variance column is the variance 
of all epoch 30 trials. 

We plot First Mean and Last Mean versus Silo Count 
in Figure 4. 

Table 1: NSGD and SSSGD Comparisons 

Figure 4 shows that as the mini-batch size increases, 
Accuracy falls and it takes longer to cross over the 90% 
threshold.  This also accounts for the increased variance 
of the final epoch’s accuracy.  For mini_batches of 5, 
both “First Mean” and “Last Mean” seem largely 
unaffected by silo count. 

Name M
B
S

Cross 
overs 

2,4,8,16,29

Silo
Cnt

First 
Mean

Last 
Mean

Last 
Variance

NSGD 5 3, 3, 2, 1, 1 1 0.9018     0.9481 0.0003006

NSGD 10 6,6,5,3,1 1 0.8805     0.9477 0.0002901

NSGD 20 12,8,6,5,3 1 0.8439 0.9420 0.0007900

SSSGD 5 6, 4, 2, 1, 1 2 0.8972 0.9479 0.0002975

SSSGD 10 7, 4, 2, 1, 1 2 0.8846 0.9470 0.0003888

SSSGD 20 8, 7, 6, 1, 1 2 0.8544 0.9428 0.0011728

SSSGD 5 3, 2, 1, 1, 0 4 0.8973 0.9494 0.0000160

SSSGD 10 8, 5, 3, 2, 2 4 0.8812 0.9457 0.0005974

SSSGD 20 10,10,9,8,4 4 0.8416 0.9388 0.0010669

SSSGD 5 4, 4, 2, 1, 0 8 0.8919 0.9495 0.0000103

SSSGD 10 8, 5, 3, 3, 3 8 0.8777 0.9427 0.0009329

SSSGD 20 11,7,5,3,2 8 0.8480 0.9419 0.0007518

SSSGD 5 5, 4, 4, 1, 0 16 0.8974 0.9494 0.0000067

SSSGD 10 8, 7, 3, 2, 1 16 0.8759 0.9464 0.0002443

SSSGD 20 11, 8, 7, 5, 5 16 0.8575 0.9360 0.0014022
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3.5. Parallel Silo Randomization SGD
An alternate architecture would be to have a central 

server that sends the model to each silo.  Silos would 
then return gradients to the central server.  The server 
would sum the gradients together and evaluate the model 
against the test data.  The server would continue the 
cycle until the desired level of accuracy was obtained or 
the epoch limit was reached.  There are several positive 
tradeoffs to counter the added overhead disadvantage of 
central processing.  One is that using a central server 
could be O(silo_count) faster, since it allows each silo to 
work in parallel.  Another is that conceptually, any client 
could hold up processing in the serial silo scenario.  A 
central server can more easily recover from the loss or 
processing delay of a single client.  

4. CONCLUSIONS
Using "Federated Learning" to create "Deep Learning" 

models while preserving the privacy of their distributed, 
siloed datasets seems to work for the MNIST dataset 
across 16 silos.  As such, it seems that our statistical 
assumptions (iid) are valid in this case. 

However, this does raise the question, why wasn’t 
forgetting encountered in prior work [20170217]?  The 
answer, we believe, relates to the relatively large number 
of client nodes in their case.  The authors actually ignore 
a subset of their clients since “experiments show 
diminishing returns for adding more clients beyond a 
certain point”.  So although, as they say, “any particular 
dataset will not be representative of the population 
distribution”, random mini-batches across collections of 
clients will be.  As such, statistically, their random mini-
batches of clients probably correspond to our clients’ 
random mini-batches. 

5. FUTURE WORK
The next step is to use this paper to convince some 

silos to try it on real data.  At that point, “plumbing” 
issues must be addressed.  For example, 

• Meta Data - In a peer-to-peer network, a client 
must know the order of processing so that it can 
send the data to the next client. What is the 
acknowledgement protocol? When does a 
“timeout” occur?, etc. 

• Standard Formats - E.g. The interchange format 
contains layers of weights.  What format and 
precision should be used to transmit the data?  
E.g. Is 100% transmitted as 100.000 or 1.0000? 

• Benchmark Data - E.g. Published results in the 
literature generally lack benchmark data.  This is 
necessary if we want to “calibrate” two different 
neural networks running in two different 
installations to see if they produce the “same” 
result. 

In addition, the protocol must take into account the 
fact that data and silos will be added over time. 

Future experiments might look into splitting test 
(validation) data as well as trial data. 

We need to look into the possibility of adversarial 
attacks which could reverse compile patient data from 
the DL model [20170914]. 

Finally, in the real world, there are a variety of reasons 
that the institutions behind these silos do not co-operate 
(beyond HIPAA).  They include inertia, “Not Invented 
Here” and competitive considerations.  A future paper 
will describe a framework for addressing this. 
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